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Abstract
Continuous time Markov chains are commonly used in system
performance modeling. Increasing system complexity and non-
Markovian behavior can drastically increase the size of a Markov
model's state space. Accordingly. approximation techniques have
been introduced to reduce the resources needed to solve Markov
chain models. In this paper we discuss a method for automatically
deriving symbolic solutions of Markov chains Symbolic solutions
should provide insight when attempting to evaluate the validity of
both Markov models and approximation techniques for their
solution.

1. In --OWton

Continuous time Markov chains (CMC) are commonly used tools in computer

systems modeling. CTMC have been used to model program behavior?3 system

performance. $.S system reliability.4 5 and system availability.6 and also in the
combined evaluation of performance and reliability.7.5 Although the limitation of

exponentially distributed state occupancy times, as implied by a homogeneous CTMC.

appears to be restrictive. it is possible to use the Coxian method of stages to allow

arbitrary phase type distributions. 3,9. 10. 1

In general, once a Markov chain model of a system has been constructed. there

are several solution -methods available. Figure 1 summarizes these methods and

typical modeling packages that employ them. The Markov model of a system can be
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solved using Integral equatiouns. formally taking the convolution of the probability of

entering the state with the probability of remaining in It'V Is Alternatively. the Maxicov

cbain can be converted to a coupled set of homogeneous differential equations. 3 This

set of equations can be solved using either numerical techniques or Laplace

transforms. A third solution method in simulation. As an introduction. we winl briefly

discuss some of the advantages and disadvantages of each of these methods.

Simulation can be more realistic than analytic models. Many types of complex

systems, particularly those for which independence assumptions are invalid, can be

directly modeled using simulation. However simulation inodult can have high

development costs and may require large amounts of computer time to obtain

statistically significant results. Therefore. the low cost alternative of analytic modeling

can be attractive. even it approximating assumptions are necessary. If a range of

systems must be compared. similar systems must often be simulated individually.

* Analytic modeling may permit the comparison of such systems without repeated

simulation.

The most common analytic approach is to represent the Markov chain as a set of

- . coupled differential equations. Each equation describes the flow "balance" conditions in

a corresponding state of the chain. Le. the instantaneous rate of change in the

probability of being in a state is equal to the rate of arrival into the state less the rate

of departure fromA the state at that instant. This set of equations can be solved using

either Laplace transforms or numerical techniques. Using Laplace transforms for large

systems (either numerically or symbolically) may require finding the roots of many

large polynomials, a computationally expensive task. One advantage of numerical

techniques is that they can be easily extended to evaluate non-homogeneous Markov

chains. However. If the system Is stiff. Le. if two or more transition rates out of any

single state differ greatly in magnitude, special care will be needed to get an accurate

solution.

.........................................



Sets of integral equations are sinila to coupled differential equations.1 Integral

equations provide a basis for modeling both semnd-Markov processes and non-

homogeneous Markov chai . Integral equations for Markov chain state probabilities

will also provide the basis for the closed form solution techniques discussed later in

this paper.

One issue we do not address in detail is the solution of cyclic Markov chains. In the

context of modeling fault-tolerant systems, we are restricting our attention to non-

repairable systems. Such systems can generally be represented by Markov chains

without cycles. If cycles are present in the model, all the solution methods discussed

are of diminished utility. The simulation of a cyclic Markov chain may be more

expensive (for the same degree of accuracy) than for an acycic chain of the same size,

as the number of possible-paths through the chain are no longer finite. If an analytic

solution of a cyclic Markov chain is desired, numerical solution of systems of either

differential or integral equations is usually the recommended approach.

Approximation techniques may still allow us to obtain a symbolic solution, albeit an

,. inexact one.

To illustrate the use of Markov models, we consider an example fr;m reliability

modeling. 14 Figure 2 depicts the transition diagram of a Markov chain representing a

3-component parallel redundant system. The individual components have lifetimes

that are independent and exponentially distributed with parameter A. When an

individual component fails, a reconfiguration process with rate parameter 6 begins.

This process is guaranteed to reconfigure the system as long as a second fault does not

occur before the reconfiguration is completed. The reliability of the system at time t,

denoted R(1), is given by I - Piprocess in state F or F, at time tJ.

A package employing traditional (Le. numerical) solution techniques would input

numeric values for the parameters of the model (here 6 and X) and would solve the

system numerically for ! less than some fixed value. To determine the actual behavior

*......................................,......... ...- '.-,- .-;-.:.". . "-".".*..".-.-.--.--.- --. ".-.."..".-'.'.".-.-.-..--.--.-.-.--.-...-
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of the system as a function of a parameter other than t would require many runs of

suc a program.

In this paper, we discuss a method for the derivation of state probabilities of an

acyclic Vakov chain in a symbolic fashion. Closed form results (that previously could

be obtained only by hand) give greater insight into actual system behavior by allowing

us to easily study the relationship between input parameters and the resulting state

probability distributions. Our approach is based on the use of integral equations. It is

computationally similar to using Laplace transforms to solve systems of coupled ODE's. - -

The program implementing the algorithm discussed in the paper is called ACE cltc

Markov fadn j iuator). The solution of cyclic chains (which presents additional

difficulties) is omitted from our discussion.

In section 2, we describe our method which is partially inspired by the program

SPADE) 0 In section 3 we describe our program's implementation. Some examples of

*the useof ACE are givenin section 4.

Z Basic Aproach

Consider an acyclic continuous time Warkov Chain. Let the states be numbered

1.2.....N. Lt ... be the transition rate variables. The transition rate from state

t to state j is denoted by jV. where q .can be expressed as a linear sum of transition

rate variables, Le.

binl
Further let gt=E denote the total exit rate from state t.

For any state i of an acyclic Markov chain, let Pj(t) be the probability that the

system is in state t at time 1. For any state i, P(t) may be written as a polynomial of

the form

I-;.

--'.-
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The fact tat the state probability distributions are of this form is easily derived. lust

observe that the initial state(s) probability(ies) bas (have) this form The probability of

being in (non-initial) state t at time t can be written as:

A t M f P(Zqi~e-*t' (3) :-
0 jej(i)

where J(i) is the set of states with a transition leading to state i. By induction, it is

easy to show that if every P (z) has the form (2). then so does any Pj (x) derived using

(3).

We now derive the equations needed to calculate the constants of equation (2) for

any state of an actual acyclic Markov chain. Let S(i) be the set of poles of the

laplace-Stieltjes Transform of P(t). L.e the set of the 7's of (2). Let us rename

7" -q9 and define S(J(i))_ U S(J). Setting N(j) IS(J)I, we can write

* SW I7,.vs ..... 7f'vU). If we number the poles then Pj(t) may be written as:

L(j,) is the smimu n power of t associated with pole 7. in P(t) such that us0._

If N(j)> 1. it is easy to show using en inductive proof that. for any pole 'y..

( a ) 3 0) > Vk<L(',1) (a u 0 0) (5)

If N(i)=I. then P(t) is of the form at0e9. This corresponds to the case where there is

only one directed path from the original state to state and all the transition rates

along this path ae all equal. Le. 91 =-y. Only in this case is the implication in (5) not

satisfied. Thus Pt (t) may be written

AM e Fe lt) q= ]e7(t-)dx. ()
t es cae(t) i ) h o

~~~But. especially when the Pj(t)'s have common poles, i.e. when IS(J(i))1 ( 8J~,"" "

. .-.. . . . . . . .
. . . . . .,
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this expression reduces to

= P "t) S f) C 3 ]e70.t ee"( eJZ171"=".._O
=(Yj (7)

-eS(.J()) 0 k=o
where

-. k . 1t(-,, .,:)qjja-Lt, ,s( i)(5)

and -)

Z()=max! L -j=71'
JOA7) OL i J) " (9)

Movzng the integral inside the summation we obtain

t
Ptt) =af.zhe(r )d . (1 00)

-eS(J(t)) k.- 0
The resolution of this integral depends on whether y differs from ye . If ,=7, then.

I t (1f.Xe.+,* 
._ ..

L_ k,

0 0 -2(k+1)

Otherwise. when S=(y-76). integration by parts yields

f(*- ] + 12). ..

We can now write the equation for P((t) ""(i 5 l(2

! t ) -+1

+ ( -i "] + 1(' e a7..) - . (13)
"So (k"1-

We note that

S() = ' u S(J()) (14)
and define

"-.'T.



L(,L) = an (y1)+1 it,=" and .es(I)) (15)

if7"7 and 'y4-eS(J(i))

From (13) note that. ifu k-1. we have

k! tk-

S=O k =0 

" ""+1

•A kU=O U!k=
u -, 

"..-,U

SIf we write Pt(f) as

S(t)= tk 
(16)

then

a..u ( I s Sf•1--U

If jo ys. we have

= '(-) =. ", 1-,- '  k=o.... (g) (i7)

if 7 S (J()) then

b a.o = 1( ~,,O) '(.nlk 1 ! - (iB)

k=O

Otherwise, ir 7" eS(J()..

= k =o, .... 4(7*)()

(kgli) 
(19)'SWi( these equation, we can easily compute the coefcients of the polynomials in t

* that multiply the exponentials in the state probability expressions.

. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . ..... 
.* *



In this section we outline the procedure used by the ACE program to compute

state probability expressions for an acyclic Markov Chain. Techniques for chains with

*- cycles are more complex. requiing either the symbolic solution of a set of equations or

some form of approximation. We also briefly discuss the operation and user interface

of ACE.

The ACE procedure is detailed in the Appendix; we briefly outline it here. First the

states are sorted according to the partial order induced by the transitions. For state

t. the probability expression is computed by first determining all the poles of states

that have transitions leading to state t. If the pole associated with state i's outgoing

transition is not in the incoming set, coefficients for the polynomials multiplying the

incoming exponential terms are computed using equation (17). The new pole's

polynomial multiplier is a constant computed using equation (18). If the outgoing pole

is also in the set -of incoming poles. the degree of its polynomial will be incremented.

The new coefficients for the incremented polynomial can be computed using equation

(1-)

ACE is being developed as the fust stage of a testbed for aggregation techniques.

Two versions are currently being implemented. The first version supports an unlimited

number of symbolic variables but generates answers that are symbolic only in the

poles (the powers of the exponential terms). The coefficients of the polynomials in t

9 that multiply the exponentials are numeric. The second version of ACE is fully

symbolic in one variable and numeric in other variables. Le. the coefficients of the

polynomials in t that multiply the exponentials have both numeric and symbolic parts.

This allows us to conduct a parametric sensitivity analysis in a fully symbolic fashion.

. Eventually these two methods will be combined yielding completely symbolic poles and

coefficients that are fully symbolic in at least one variable.

~~~~~~~~~~~~~~~... ....... .-..- ..-........-... ... ..... ,.................. ......,-..-..,..... .,:.......-- -........... :
,.., .,,,.'. .. . ,. , , .'9 %''5, ,,*,,.. .. , ., '. - ...* - -, ,,'...,. .' . -.- ,..*,.' . .. € -



* Several problems have arisen in constructing the ACE package. When computing

symbolic coefficients, the size of the coefficients grows linearly with the number of

symbolic variables used along all paths to the state. The coefficients rapidly reach an

unmanageable size, even for a small chain. Restricting the lengths of the paths

through the chain would greatly reduce the package's utility, particularly for chains

that are "long" (e.g. simple death processes). Instead. we restrict the number of

symbolic variables that are maintained in a given run of the program. All variables not

treated symbolically are merged numerically. If poles are still maintained in a fully

symbolic fashion, care must be taken to correctly merge the numeric values of

symbolically different, numerically identical poles.

Further efforts, include the construction of a "user-friendly" interface and the

addition of a block definition and solution facility. The user will be able to define

blocks of states with fixed entry and exit points. The blocks could be evaluated by

direct insertion of their states into the chain. Alternatively, the block could be solved

in isolation using'symbolic or numerical approximation methods. This capability

should further facilitate the use of ACE in evaluating aggregation methods.

4. Empleu and Conclumans

In this section we demonstrate the use of ACE-like symbolic computation. We

begin by symbolically solving the example given in Figure 2 using the method described

in sections 2 and 3. We then apply a simple aggregation technique to the chain and re-

solve the system. We give examples that demonstrate the utility of a symbolic solution

for bounding, sensitivity analysis. and comparison of aggregation techniques.

41 Izmt Sdutlon of Scminpoamt systm

Given the chain shown in Figure 2. we follow the algorithm outline given in section

3. We first observe that the only - for the probability distribution of state 3 is -3. As

-, . °-"
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state 3 has no parent the constant m'Io= 1. Accordingly we can write:

PO(t) =. (20)
We can continue following the algorithm sketch and derive the following equations for

the functioning states:

p&R(t) 3A - -u (21)

P (t) = 36 - U *-(A+)t + 3e "M (22)
A-6 A-6

Pp(t) = -+ A ,-(D)S (23)

(X-)(2X-6)( -6
-A9-M + 61\ 6 a _(A.5) +

A-6 ( X-6)(A-6)

P-(t) = . +(A.I + .6. _(24)
(A-6)(2X-d) X ( +6)--

U6 ,. + 36

For the state that corresponds to failure due to exhaustion of components we can

write: -

P,.(t) = + 06 e "  6O 36 - -e"j (25)(x-)(2A-6) + -)(A+6)(2A+5) - S_ , ' (

+ e 36 a)_: e-M + . ," ; + (A-6)(A+S)(2 6- eI) -+ (+ )
X+6 (2.\+6)(A\+6)

For the state that corresponds to a coverage failure we can write:

:120
" P, (t) = ( + (A-a)(2-A)) a-3 - (2-h*+) - + 3 -L (26)

A- A6(A -6 A-6*4+ A6a''6 +(~) 2X + M5

2X+6 (2X+6)(X+d)
We note that the reliability of the 3-component system is given by

SR(t) = - (P, (t) + Pf(t)) (27)
To derive the information contained in this symbolic reliability expression, even a

highly flexible conventional reliability evaluation package would require several runs

, for different parameter values. For example. to see the effect of the fault-handling

" rate we consider the reliability expression as a function of delta. Fixing A=10 - 4

*...** ** ~ . .. . . .

. . . . .. . . . . . . . . . . . . . . . . . . . .
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failure/hour and t=10 hours, in Figure 3 we graph -Log 10 of the system unreliability as

a function of -Ing o of the mean time to handle a fault. When faults are handled

* quickly (in this case about 100 ms), we see that the reliability of the system

- approaches that of a system with perfect coverage. When fault-handling is slow

(minutes or hours), imperfect coverage dramatically reduces the system's reliability.

42 An Approximate Solution of the 3-Component System

When Markov models are used for realistic systems, the state space often grows

beyond practical limits. Accordingly, reliability evaluation packages often use various

aggregation or lumping methods to reduce the size of the state space. For example, a

system model can be decomposed into sub-models of fault-handling and fault-

occurrence behavior.1 6 Short of assuming all faults are successfully handled, one of the

simplest approaches is to condense the second fault rate and fault-handling

parameters into a single constant c denoting cwh e, the probability that an

arbitrary fault is successfully handled. When this approach is used with our example.

we obtain the chain shown in Figure 4. Its state probability equations are

* ~~PSAW )e~:. (~

Pu4(t) = -3c.e-s + 3c e-L- (29)

PIA(t) = 3cICe -6czcae - ' + 3clce a -  (30)

P*()=-c 1c,.- + 3c c e. - 3c c2 e"4 + c1ce (31)

P.(t) = (2(l-cu)c, - (l-c,))e - 3c,(l-c 1 )a "  + (-c,) + c,(--c 1 ) (32)

As in the original chain.

R( ) = 1- (P9,t) + p,,()

One interesting problem is correctly choosing values for the c parameter. If two c

parameters were employed, as in our example, the instantaneous coverage

" approximation would usually be

.............................................- '*
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* 3=*e (34)

However. if only a single coverage parameter were chosen, the choice might well

depend on the period of time over which we were interested in evaluating the reliability

of the system.

With the reliability expressions for both the aggregated and original Markov

chains, we can evaluate the acceptability of the aggregation scheme by comparing the

results they produce. Figure 4 shows the graphs of three estimates of -ag o of system

unreliability as a function of logs0 of t. With A, fixed at 10-4 failures/hr. for all three

curves, the lower curve is derived by solving the original Markov model in Figure 2 with

6 = 1. Using this 6 value, the middle curve is derived using the aggregated chain in

Figure 4 and instantaneous.coverage estimates derived from equations (33) and (34).

* The upper curve is derived using a naive pe'f act comWe model Le. fault handling is

assumed to always succeed instantaneously. Even for this contrived situation (QX and 6

are probably much closer in value than they would be in practice), we see that a

* constant coverage assumption still can provide a good estimate of system reliability.

For our particular example, if a more realistic 6 value is chosen, the reliability

estimates provided by the original and aggregated chains are essentially identical

* Extending this validation of a simple approximation scheme for a small model to more

realistic models may require significant effort.

Symbolic solutions of CTMC should provide at least two benefits. First, it should be

possible to compare the results obtained by exact and approximate solution methods

for small to medium sized CTC. By indicating the magnitude of error that

approximate solutions introduce, this type of analysis should provide a good indication

of an aggregation/approidmation technique's utility for larger, more realistic

problems. Second. symbolic solutions allow us to easily examine the influence of

changing parameter values on the solutions of Markov models. This type of

o* .. *. . .

-- ..- .o* "-° S .
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investigation could be very ezpenuive sing conventional simulation or numerical

solution techniques. By providing easy access to symbolic solutions of CTC, the ACE

p&ckae should enhance our ability to study Markov reliability models, and

approximation techniques for their solution.

.--

° .
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WGN: An acyclic Markov chain with state space II2,....NJ sorted so that the ancestors
of a every state precede it in the list (for convenience).

FMR each state s e, 1.....N I

Determine J(s) the set of states with transitions leading to s
Determine S(J(.)) and Lg(-/). 7 eS(J(s))J using (9) and (15)

Compute%. k =O.....Ls(7), veS(J(i))

Let 1" -q and &,..o=0

Note: 7" for an absorbing state is 0.

FOR 76S(F(i)), 7e.7.

Compute a.k using formula (17)

Accumulate a.;,.0, + ~. (-I.)#*' ki

END -OR

If 7.ES(J(i)). compute &,., from (19) for k =0.....1 (70)

P-(t)= E &t

WID FMR

. i.

;,./,. . . . ..... .... .. •..-.
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Method: Simulation

Package: CAST17

Note: Allows full imulation of a restricted class of systems

Method Differential Equations (Numencal Solution)
Package: HARP 5

Domain: Homogeneous and Non-Homogeneous acyclic CNC - -

Package: SAVE.
Domain: Cyclic CTMC

Method: Differential Equations (Laplace Solution)

Package: SURFI1I
Domain: Non-Markov Processes
Note: Approximate solution using Cozian method of stages

Method: Integral Equations (Numerical Solution)
Package: Care II Coverage Model23

Domain: Semi-Markov Processes
Package: Care I Reliability Model 3 "

Domain: Non-Homogeneous CTMC

Method: Coned Form Solution

Package: ARIES1 -
Domain: Cyclic Homogeneous CI'MC
Note: Poles and their coefficients derived numerically

Package: ACE
Domain: Acyclic Homogeneous CTlC
Note: Poles and their coefficients derived symbolically

Flgmv 1: kbllabldty Modeling Piwkages Eapoyf Markou Mahin Techniques

U-yswm Av~asbhty &rmmr?in pvpamio, imiep an IBD-Dli Joint study.
o. -



P~grem Kinrkow Cmin Mate Dlqrm for a 34kofmt Pwral UAda&nt Systuem
Coverage failure results only from a second fault occurrence during reconfiguration

.V
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]LMp~ 8: utect of ]ault-Hmndiug Rate on Reliabiity

)fission Time 10hrs.A 10-4
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ftgwt 5: ftgvqptAionS Uftct on Reliability rstimates

II ;

The bottomn curve is an estimate of reliability derived from the original Markov chain.

The middle cumw is derived from the uggregated chain in Figure 4

Thle top cumv is a perfec t covlegI estimate

.
.. " ..
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